Dr. James McCaffrey presents a complete end-to-end demonstration of anomaly detection using k-means data clustering, implemented with JavaScript. Compared to other anomaly detection techniques, ...
ABSTRACT: From the perspective of student consumption behavior, a data-driven framework for screening student loan eligibility was developed using K-means clustering analysis and decision tree models.
Meta Platforms Inc. today is expanding its suite of open-source Segment Anything computer vision models with the release of SAM 3 and SAM 3D, introducing enhanced object recognition and ...
Rocky high steep slopes are among the most dangerous disaster-causing geological bodies in large-scale engineering projects, like water conservancy and hydropower projects, railway tunnels, and metal ...
Advanced K-Means clustering system for customer analytics and segmentation using machine learning. Includes RFM analysis, business insights, and actionable marketing strategies. - ...
Abstract: Thermal imaging has become a critical tool in the diagnosis and maintenance of photovoltaic (PV) panels, particularly in detecting localized hotspots that indicate underlying faults. We ...
In this project, I explored the Mall_Customers.csv dataset with the main focus on customer segmentation using K-Means clustering. The goal was to identify distinct customer groups based on Age, Annual ...
1 Department of Applied Sciences, Intelligent Asset Reliability Centre, Institute of Emerging Digital Technologies, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia 2 Bursa Malaysia Berhad, ...
Brain tumor segmentation is a vital step in diagnosis, treatment planning, and prognosis in neuro-oncology. In recent years, deep learning approaches have revolutionized this field, evolving from the ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results