QA teams now use machine learning to analyze past test data and code changes to predict which tests will fail before they run. The technology examines patterns from previous test runs, code commits, ...
New forms of fentanyl are created every day. For law enforcement, that poses a challenge: How do you identify a chemical you've never seen before? Researchers at Lawrence Livermore National Laboratory ...
Interpretable AI model could offer new insights into why medicines cause certain side effects, helping to improve future drug safety predictions.
The Opioid Risk Tool for Opioid Use Disorder may help identify patients with chronic noncancer pain at increased risk for OUD ...
IMF researchers show that satellite data, especially nighttime lights combined with machine learning can reliably estimate ...
Background Early graft failure within 90 postoperative days is the leading cause of mortality after heart transplantation. Existing risk scores, based on linear regression, often struggle to capture ...
Scientists have created an AI model that forecasts moderate heat stress—a major precursor to coral bleaching—at sites along ...
Supervised learning algorithms like Random Forests, XGBoost, and LSTMs dominate crypto trading by predicting price directions ...
Recentive Analytics, Inc. v. Fox Corp., No. 23-2437 (Fed. Cir. 2025) – On April 18, 2025, the Federal Circuit upheld the district court’s dismissal of the case on the ground that the patents were ...
The absence of reliable data on fundamental economic indicators (e.g. real GDP), combined with structural shifts in the economy, can severely constrain the ability to conduct accurate macroeconomic ...
RFX-Fuse (Random Forests X [X=compression] — Forest Unified Learning and Similarity Engine) delivers Breiman and Cutler's complete vision for Random Forests as a Forests Unified Machine Learning and ...
Recent study reveals machine learning's potential in predicting the strength of carbonated recycled concrete, paving the way ...